首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1716篇
  免费   134篇
  国内免费   177篇
化学   755篇
晶体学   17篇
力学   734篇
综合类   21篇
数学   68篇
物理学   432篇
  2024年   2篇
  2023年   14篇
  2022年   40篇
  2021年   50篇
  2020年   75篇
  2019年   51篇
  2018年   51篇
  2017年   58篇
  2016年   79篇
  2015年   70篇
  2014年   73篇
  2013年   193篇
  2012年   74篇
  2011年   65篇
  2010年   64篇
  2009年   68篇
  2008年   84篇
  2007年   95篇
  2006年   77篇
  2005年   79篇
  2004年   82篇
  2003年   77篇
  2002年   57篇
  2001年   52篇
  2000年   35篇
  1999年   38篇
  1998年   39篇
  1997年   38篇
  1996年   36篇
  1995年   44篇
  1994年   20篇
  1993年   35篇
  1992年   18篇
  1991年   30篇
  1990年   18篇
  1989年   14篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1977年   2篇
  1976年   1篇
排序方式: 共有2027条查询结果,搜索用时 31 毫秒
1.
A continuum damage model was developed to describe the finite tensile deformation of tough double-network (DN) hydrogels synthesized by polymerization of a water-soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading-unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3-sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto-plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.  相似文献   
2.
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.  相似文献   
3.
Although great progress has been made in the advancement of nanozymes, most of the studies focus on mimicking peroxidase, oxidase, and catalase, while relatively few studies are used to mimic laccase. However, the use of nanomaterials to mimic laccase activity will have great potential in environmental and industrial catalysis. Herein, Cu/CuO-graphene foam with laccase-like activity was designed for the identification of phenolic compounds and the detection of epinephrine. In a typical experiment, the formation mechanism of Cu/CuO-graphene foam was investigated during the pyrolysis process by thermogravimetric-mass spectrometry. As a laccase mimic, Cu/CuO-graphene foam exhibited excellent catalytic activity with a Michaelis-Menten constant and a maximum initial velocity of 0.17 mmol/L and 0.012 mmol∙L-1∙s-1, respectively. Based on this principle, Cu/CuO-graphene foam nanozyme could differentially catalyze phenolic compounds and 4-aminoantipyrine for simultaneous identification of phenolic compounds. Furthermore, a colorimetric sensing platform was fabricated for the quantitative determination of epinephrine, showing linear responses to epinephrine in the range of 3 mg/mL to 20 mg/mL with the detection limit of 0.2 mg/mL. The proposed Cu/CuO-graphene foam nanozyme could be applied for the identification of phenolic compounds and the detection of epinephrine, showing great potential applications for environmental monitoring, biomedical sensing, and food detection fields.  相似文献   
4.
采用DIS数字信息化系统,对不同浓度的蓝墨水溶液在激光光源照射下的透射平均照度及照度分布图像进行实验研究,得到了平均照度值随溶液浓度变化的规律。对不同颜色塑料膜片对白炽灯光源透过照度值及照度分布图像进行实验研究得到及其相关之规律。  相似文献   
5.
A series of phenolic epoxy resin (PEP) modified polyurethane foams (PUF) were prepared via an in-situ polymerization, one step process. It was found that the epoxy modified PUF foam exhibited a perforated network structure with larger cell size, higher open cell porosity and enhanced ovality compared with pure PUF. With increasing content of PEP, the tensile strength, elongation at break and low temperature modulus of PUF decreased. A single Tg was observed for PEP modified PUF, indicating that the two component phases of the polyurethane-epoxy were miscible. With increasing PEP content, the Tg of PUF shifted slightly to higher temperature, tan δmax dropped to lower values, and the retention value of the storage modulus at ?20 and ?10?°C increased. For pure PUF, the cell walls degraded and the structure became disordered after aging under heat and stress, while for PUF/20wt%PEP, the degradation degree was obviously reduced, and an orientation of the cells along the stress direction and a density increase was observed. During aging at 200?°C, the retention of the mechanical properties of PUF/20wt% PEP was much higher than that of pure PUF, and it showed superior stability under heat and stress, attributed to incorporation of the thermally resistant oxazolidone rings and benzene rings in the PU backbones, the highly cross-linked networks of the polyurethane-epoxy systems and the obvious orientation of the cells under stress.  相似文献   
6.
通过纳米二氧化硅的硅烷化改性, 使其在高矿化度盐水中可以稳定存在的前提下, 研究了改性纳米颗粒与阳离子表面活性剂十二烷基三甲基氯化铵混合体系的溶液稳定性及协同稳定CO2泡沫的效果. 研究结果表明, 无机盐离子对改性纳米颗粒与阳离子表面活性剂间的静电吸引力具有屏蔽作用, 且矿化度越高, 屏蔽效果越明显, 从而混合溶液更易于在高盐水中稳定; 纳米颗粒表面的活性剂吸附层受二者浓度的影响, 进而影响了颗粒的亲/疏水性; 当混合体系中的表面活性剂浓度低于临界胶束浓度(CMC)时, 混合溶液与CO2的界面张力高于单独活性剂溶液, 而当活性剂浓度高于CMC时, 对CO2-溶液界面张力几乎无影响, 最低界面张力可降至6 mN/m左右; 改性纳米颗粒的加入可以进一步提高CO2体相泡沫半衰期一倍以上, 但受二者浓度比例的影响; 纳米颗粒的加入有效提高了多孔介质中泡沫的表观黏度, 最大增幅由20 mPa·s增至55 mPa·s左右, 泡沫黏度增加接近3倍, 增强了CO2泡沫驱的封堵作用.  相似文献   
7.
Zhe Zhang 《中国物理 B》2022,31(3):36802-036802
As a prototype material of colossal barocaloric effects, neopentylglycol is investigated by combining high-precision differential scanning calorimetric measurement and high-energy x-ray diffraction measurement. The diffraction data at constant temperatures indicate a first-order phase transition with thermal hysteresis as well as the phase transition asymmetry, specifically, the phase transition is completed faster at cooling than at heating. The analysis of resulting pair distribution function confirms the intermolecular disorder in the high-temperature phase. The phase transition asymmetry is quantitatively characterized by time-resolved x-ray diffraction, which is in agreement with the thermal measurement. Also, such an asymmetry is observed to be suppressed at high pressures.  相似文献   
8.
茹东恒  吴昊 《力学季刊》2019,40(3):458-468
金属材料疲劳寿命由裂纹萌生和裂纹扩展寿命两部分组成,其中对于萌生寿命中的小裂纹分析是精确描述裂纹萌生寿命的关键.而小裂纹在扩展过程中由于尺寸相对较小,导致传统线弹性断裂力学预测方法失效,需要对其进行改进,考虑裂纹尖端塑性区引起的残余压应力对小裂纹扩展速度的影响.本文针对此问题进行了初步分析,通过对塑性区引起的残余应力的量化,结合小裂纹门槛值特性,提出了一种经验型修正的小裂纹扩展模型,用于定量预测裂纹的萌生寿命.使用铝合金6082-T6缺口试样进行了疲劳实验,并与理论结果进行了对比,验证了所提模型的有效性.  相似文献   
9.
针对RC梁开裂荷载计算方法尚未统一的现状,首先,结合18根RC梁试验数据对比了已有的6种RC梁开裂弯矩计算公式,发现开裂弯矩理论计算值与试验值的偏差大小和混凝土强度有关;然后,通过提出塑性变形发展程度系数k,推导新的RC梁开裂弯矩计算公式,并进一步基于k值和塑性影响系数计算值γk进行改进;最后,选取12根RC试验梁验证改进公式的准确性,证明改进公式的计算值与试验值吻合更好且偏于安全。  相似文献   
10.
A polyurea macromer (PUM) was synthesized and dispersed in basic conditions to form self‐assembled nanoparticles (<20 nm dispersions, up to 30 wt % aq. soln.). These nanoparticles enabled surfactant‐free emulsion polymerization to form hybrid polyurea‐acrylic particles despite the absence of a measureable water‐soluble fraction. The Tg of the starting PUM material was a strong function of the PUM's extent of neutralization and hydration (varying between 100 °C and >175 °C) due to changes in hydrogen and ionic bonding. Two separate hybrid polyurea‐acrylic emulsion systems were prepared: one by direct polymerization of (meth)acrylic monomers in the presence of the nanodispersion and a second by a physical blend of PUM nanodispersion with an acrylic latex control. The direct polymerization method resulted in a hybrid emulsion particle size that developed by a mechanism resembling conventional emulsion polymerization and was unlike that described for seeded polyurethane dispersion systems. Film hardness was shown to increase with increasing coating thickness for the hybrid film prepared by direct polymerization. The resulting mechanical properties could be explained by applying mechanical models for a composite foam structure. These results were unprecedented for normal elastomer films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1373–1388  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号